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The well-known Hale-Shaw cell consists of two closely spaced parallel plates, the space 
between which is filled with fluid. The dimensions of the cell in the plane of the boundary 
plates are much greater than the distance between them - the cell thickness. At low veloc- 
ities the flow in the Hele-Shaw cell models two-dimensional potential flow and is the hydro- 
dynamic analog of single-phase flow through a porous medium [i]. This analogy is based on 
the coincidence of the corresponding equations of motion (Darcy's law). In a number of im- 
portant technical applications, in which flat-channel flow is encountered, the flow may be 
high- as well as low-velocity. 

One such application is the flow in hydraulically fractured rocks, one of the most prom- 
ising methods of creating closed circulation systems for extracting geothermal energy [2]. 
Whereas at a distance from the boreholes creep flow is realized, as the borehole is approached 
inertial effects become increasingly apparent. In these circumstances not only the ideal case 
of symmetric radial flow but also nonsyrametric jet flow and flow past impermeable inclusions 
may be realized. Jet flow and flow past a cylinder in a flat channel were investigated in 
[3-5]. 

Modern high-speed highly integrated computer circuits are characterized by high heat 
release (~102 W/cm2). Boards with built-in integrated logic elements are cooled by immersion 
in a coolant flow [6]. In this case, if the boards are closely spaced, flow in a flat chan- 
nel of variable thickness is realized. 

A solution is proposed for the stationary problem of laminar viscous incompressible 
flow past a circular cylinder with internal heat sources in a Hale-Shaw cell with thermally 
insulated walls (the generators of the cylinder are perpendicular to the planes of the cell). 
The problem models the flow past a heat-release element in a flat channel. For simplifica- 
tion purposes it is assumed that the height of the cylinder is equal to the thickness of 
the cell and the problem is considered in the two-dimensional approximation. 

Confining ourselves to the case of moderate temperature differences in the fluid, we 
will base our analysis of the problem on the classical Oberbeck-Boussinesq model: 

( U . v ) U  + (t/9)VP = v h U  ~ g f f (T  - -  T ~ ) ,  ( U . v ) T  = ahT,  d i v  U = 0 ( 1 )  

(U and g are the velocity and gravity vectors, p is the pressure, T is the temperature of 
the fluid, T~ is the approach stream temperature at infinity, p is the density, v is the 
kinematic viscosity, G is the coefficient of thermal diffusivity, and 8 is the volume coeffi- 
cient of expansion of the fluid). 

On the flat surfaces of the cell {z = h/2} and {z = -h/2} and on the lateral surface of 
the cylinder the no-slip conditions are satisfied. At an infinite distance from the cylinder 

U = (U0(l - 4zZ/h=), 0, 0). 

The thermal problem is solved for boundary conditions of the first kind: T = T o on the 
cylinder wall (T0 is the constant temperature of the lateral surface of the cylinder) and T = 
T~ at an infinite distance from the lateral surface of the cylinder. The cell is arranged 
vertically with the z component of the gravity vector gz = 0. 

We assume that throughout the flow domain the fluid temperature is independent of the 
z coordinate, there is no motion of the fluid in the direction of the z axis, and for the 
longitudinal and transverse velocity components we have a Poiseuille profile: 

u(x, g, z) ~- uo(x,  g ) ( t  - -  4z2/h2), v(x, g, z) = Vo(X, g ) ( t  - -  4z~/h2). 
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Integrating the equations of system (i) with respect to z from 0 to h/2, on the assump- 
tion that the walls of the cell are thermally insulated, we obtain the following system of 
equations for the velocity U, = (u0, v0) in the plane of symmetry of the cell, the pressure 
p and the temperature T: 

15 5 (~ ~ 
(co.V)Co + ~7 vp = - ~  ~ ~a-7~ + 7 7 )  - ~ #  (r - r~) - ~5 ~ ~o, 

(Uo'V) T='-~a~x2+-~v~], divUo = O. 

( 2 )  

In the variables stream function (,)-vorticity (w) and the polar coordinates r, ~ the 
system of equations (2) has the dimensionless form: 

Ro* + Cr*(r + oo ) ~r -- -3~ sin (~ + ~) = Da A~ --ro,: 

]~e,(Uo.V) 0 6 DaAr~0 ' Uo=  i 0~ 8$ 
= - 5 - P r  - ; - - - ~ ,  Vo = Or ' 

A,~b = re, A,~ = 77  [r ~ ]  + --o~ ~. 

(3) 

The variable r has been divided by the cylinder radius R (R >> h), the velocity compo- 

nents u0, v 0 by 00 (00 = 1.50, 0 is the flow-average velocity), and ~ and ~ by 00R and U0/R; 
the dimensionless temperature 8 = (T- T~)/(T 0 -T~). 

We will consider the symmetric flow past a cylinder when the free-stream velocity and 
gravity vectors act in opposite (a = 90 ~ ) and the same (a = -90 ~ ) directions. The boundary 
conditions for Eqs. (3) are: 0(I, 9)= I, 0(oc, ~) = 0, u0(i, cp)= 0, c'0(l, 9) = 0, u0(~, ~)--- 
cos % Vo(OO , ~) = - - s i n  % 

The d i m e n s i o n l e s s  n u m b e r s :  Re* = ( 0 h 2 ) / ( 1 0 v R )  - t h e  r e d u c e d  R e y n o l d s  n u m b e r ,  Gr* = 
( I g l S ( T o  - T ~ ) h e R ) / ( 1 2 v 0 )  - t h e  r e d u c e d  G r a s h o f  n u m b e r ,  a n d  Da = h 2 / ( 1 2 R  2) - t h e  D a r c y  n u m b e r  
for the Hele-Shaw ceil are the internal parameters of the problem. The external parameters 
are the Re and G numbers calculated from the thickness of the cell and the flow-average ve- 

locity: Re = (Uh)/v, Gr = (Igl~(T0 - T~)h3)/(0v), which must correspond to the laminar flow 
range. 

The system of equations (3) was solved by a finite-difference method. We used a con- 
servative upwind difference scheme [7] with first-order-accurate approximation of the con- 
vective term and second-order-accurate approximation of the second derivatives. The system 
of nonlinear algebraic equations obtained was solved by the Gauss-Seidel iteration method. 
The solution was found on grids nonuniform with respect to the r coordinate (with closer 
spacing near the surface of the cylinder) and uniform with respect to the ~ coordinate. The 
boundary conditions at r = ~ were imposed at r = 15. In this case the effect of the outer 
boundary on the flow near the lateral surface of the cylinder was insignificant. 

The principal integral characteristic of the thermal problem is the average Nusse!t nmn- 
ber on the cylinder wall 

I j or (I, ~) d~. Nu ~ ~-r 
0 

For calculating Nu we used a 21 • 21 grid with a minimum step of 0.001 near the cylinder 
wall. On transition to a denser 61 • 61 grid Nu changed by not more than 3-5% for all the 
values of the problem parameters on the intervals mentioned below. For obtaining the steady 
flow pattern near the cylinder we also used a 61 x 61 grid. 

The multivariant calculations were carried out for values of the parameters Re*, Gr*, 
and Da on the intervals 0.i-i0, 0-i0, and 0.0001-0.001, respectively. The Prandtl number 
was varied from 1 to I0. Detailed calculations with a step Re* = 0.2 enabled us to deter- 
mine the value Re0* at which the flow separates from the cylinder wall when Gr* = 0. Irre- 
spective of Da, Re0* = 1.5. With increase in Gr* on the interval Re0* < Re* < 3 unseparated 
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flow past the cylinder is realized when Re* > Re0*. When Re* > 3 the flow is separated at 
all values of Gr*. 

When ~ = 90 ~ the interaction of the inertia and buoyancy forces determines the formation 
of the following types of separation zones, depending on the number of zeros of the vorticity 
on the cylinder wall (the streamline configurations in Fig. 1 and Fig. 2 correspond to Da = 
0.001): (a) one zero - flow separation in the absence of buoyancy forces when Gr* = 0 (Fig. 
la, Re* = i0); (b) two zeros - flow past cylinder with reattachment of the separated flow to 
the cylinder wall (Fig. ib, Re* = 3, Gr* = I) and with the formation of two new vortices (Fig. 
Ic, Re* = 6, Gr* = i); (c) three zeros - initial stage of formation of vortices due to fluid 
convection (Fig. id, Re* = I0, Gr* = i). 
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When a = -90 ~ the flow past a cylinder with codirectional gravity and free-stream veloc- 
ity vectors is characterized by the formation of stagnant zones near the surface of the cylin- 
der when Re* < Re0* as a result of the convective motion of the fluid. A stagnant zone is 
formed on the rear (relative to the free-stream direction) surface of the cylinder (Fig. 2a, 
Re* = i, Gr* = i). As Gr* increases, the flow separation point moves upstream and an exten- 
sive stagnation zone is formed in front of the cylinder (Fig. 2b, Re* = 0.3, Gr* = I0). As 
Re* increases, the stagnant zone is displaced towards the rear of the cylinder. 

On the cylinder wall when ~ = -90 ~ Nu is almost independent of Gr* for Re* > 1 (as Gr* 
varies from 0 to i0, Nu decreases by 5-7%). In this case the fall in heat transfer in front 
of the cylinder as Gr* increases is compensated by the increased heat transfer in the area 
of the stagnant zone (Fig. 3, Re* = 3, Da = 0.001, the local Nu distributions on the cylinder 
wall 1-4 correspond to Gr* = i, 4, 7, and i0). 

In Fig. 4 we have plotted the dependence of the local Nusselt number on the cylinder 
wall on Gr* for a = -90 ~ , Da = 0.001, and Re* = 0.3. The curves i-4 correspond to Gr* = 0, 
i, 4, and 7. When Re* < 1 the heat transfer from the lateral surface of the cylinder de- 
creases with increase in Gr* until convective motion of the fluid counter to the free stream 
develops along the entire surface of the cylinder. With further increase in Gr* the heat 
transfer increases (Fig. 4, curves 3 and 4). 

When the free-stream velocity and gravity vectors act in different directions (a = 90~ 
the dependence of Nu/Nu 0 (Nu 0 is the average Nusselt number when Gr* = 0) on Gr* has the 
form: 

Nu/Nu 0 = if+ 0,O8Gr *~ (4) 

(Nu/Nuo does not depend on De). 

The criterial relation for Nu 0 when Re < i000 (Re* < 300Da ~ can be written as 

Nuo = cPe*~176 (5)  

where  Pe* = Re*Pr i s  t h e  r e d u c e d  P e c l e t  number.  When Re* ~ 1, c = 0 . 4 7 ,  and when Re* ~ 2 ,  
c = 0 . 4 4 .  The c a l c u l a t e d  v a l u e s  o f  t h e  a v e r a g e  N u s s e l t  number and t h o s e  found  f rom e x p r e s -  
s i o n s  (4)  and (5)  c o i n c i d e  t o  w i t h i n  7%. 

Thus ,  f o r  p a r a l l e l  g r a v i t y  and f r e e - s t r e a m  v e l o c i t y  v e c t o r s  t h e  e f f e c t  o f  t h e  b u o y a n c y  
f o r c e s  on t h e  h e a t  t r a n s f e r  f rom t h e  l a t e r a l  s u r f a c e  o f  a c y l i n d e r  in  a f l a t  c h a n n e l  i s  man i -  
f e s t e d  o n l y  when t h e  v e c t o r s  a c t  in  o p p o s i t e  d i r e c t i o n s .  The g e n e r a l i z i n g  r e l a t i o n s  (4 )  and 
( 5 ) ,  o b t a i n e d  on t h e  b a s i s  o f  a l a r g e  number o f  c a l c u l a t i o n s  in  a c c o r d a n c e  w i t h  t h e  p r o p o s e d  
f low model ,  which  t a k e s  i n e r t i a l  e f f e c t s  i n t o  a c c o u n t ,  make i t  p o s s i b l e  t o  e s t i m a t e  t h e  t o t a l  
h e a t  t r a n s f e r  f rom t h e  l a t e r a l  s u r f a c e  o f  a h e a t - r e l e a s e  e l e m e n t  in  a f l a t  c h a n n e l  in  t h e  
p r e s e n c e  o f  m o d e r a t e  t e m p e r a t u r e  d i f f e r e n c e s  in t h e  f l u i d .  
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